
A design method for modular energy-aware software

A Design Method for Modular

Energy-Aware Software

OUrsi @ OU.NL

March 31, 2015

Christoph Bockisch

(christoph.bockisch@ou.nl)

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 1

A design method for modular energy-aware software

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 2

Research Overview

Software Engineering Method for Energy-Aware Systems

Tool support

Conclusion

A design method for modular energy-aware software

Career

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 3

2003 – 2008 PhD studies

Dissertation: An Efficient and Flexible Implementation of Aspect-

Oriented Languages

2009 – 2014 Assistant Professor for Software Composition

• Software architectures for reliability & adaptivity

• Energy-optimization for embedded systems

• Language technology for aspect-oriented programming

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

since 2014 Assistant Professor in Software Engineering

• Data analytics in education

• Energy-optimization in software

• Verification in concurrent systems

A design method for modular energy-aware software

Ziele Ziele

Research Approach

Technologies

Language abstractions

Software engineering

methods

Development tools

Execution environments

Goals

Aspect-orientation

Adaptive optimization

Complex events

Reliability

Adaptability

Energy-efficiency

Modularity

Adaptive embedded systems

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 4
O

v
e

rv
ie

w

C
o

n
c
lu

s
io

n

Energy-aware components

in embedded software

Debugging for AOP,

Verification and concurrency

M
e

th
o

d

T
o

o
lin

g

A design method for modular energy-aware software

Engineering Energy-Aware Embedded Software

• Common goal in software engineering: modularity

• Energy issues do not respect module boundaries

• They are a cross-cutting concern

• Conventional approaches cannot separate energy-related code

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 5
O

v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

joint work with Approach: method for systematic design

of energy-aware embedded software
• Make resources explicit at component

interface (energy is one possible resource)

• Facilitate implementing energy-optimization

in separate components

• Adapt & adopt tools to support design

process

A design method for modular energy-aware software

Project Scope

Software controlling
energy-consuming
devices/resources
(Printer parts, mobile
device
components/activities,
etc.)

Modular
implementation of
energy-related code

Reducing energy
consumption of
program execution
itself

Inventing new
optimization
algorithms

O
u

r
fo

c
u

s

N
o

t o
u

r fo
c
u

s

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 6
O

v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 7

S. Malakuti, S. te Brinke, L. Bergmans, and C. Bockisch. Towards Modular

Resource-Aware Applications. In: VariComp 2012

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

Media player on a mobile phone,

streaming music over the network

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 8

Media Player

3G Driver

Media Player

Wifi Driver

VOIP Application

3G Driver

Optimization Optimization

Media player on a mobile phone,

streaming music over the network

Optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 9

Media Player

3G Driver

Media Player

Wifi Driver

VOIP Application

3G Driver

Optimization Optimization Optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

Media player on a mobile phone,

streaming music over the network

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 10

Media Player

3G Driver

Media Player

Wifi Driver

VOIP Application

3G Driver

Optimization Optimization Optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

Media player on a mobile phone,

streaming music over the network

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 11

Media Player

3G Driver

Optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

Media player on a mobile phone,

streaming music over the network

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 12

VOIP Application

3G Driver

Optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

Media player on a mobile phone,

streaming music over the network

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 13

Media Player

Wifi Driver

Optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

Media player on a mobile phone,

streaming music over the network

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 14

3G Driver

VOIP Application

Media Player

Optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

Media player on a mobile phone,

streaming music over the network

A design method for modular energy-aware software

Case Study: Professional Printers

• Industrial case: Océ

• Printer has few main states (start, idle, standby, running)

• All finishers have similar states

• All finishers must be in the same state

• Otherwise, system complexity unmanageable

• Problem statement

• Gluer can have hot or cold glue

• Leads to two separate running states

• Increases number of states of all finishers

• Increases complexity

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 15

Start

Idle

Standby

Running

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Case Study: Professional Printers

• Printer is connected to many finishers

• Finisher can be connected to various printers

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 16

Printer

Gluer

Stacker

Optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Resource-Aware Component Interface

• Dedicated component model

• Resource ports

Service ports

• Resource Utilization

Model (RUM)

• RUM defined as state chart

• States model stable resource usage

• Services or internal events trigger transitions

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 17

Resource port Service port

radio power

bandwidth receive send disconnect connect

IDLE

 radio power ≈ 0 mW

 bandwidth ≈ 0 kbps

CELL DCH

 radio power ≈ 800 mW

 bandwidth ≈ 100 kbps

CELL FACH

 radio power ≈ 460 mW

 bandwidth ≈ 20 kbps

Network Manager of a 3G Network

send ∨ receive send ∨ receive

[inactivity timer = y]

∨ disconnect

disconnect [inactivity timer = y]

connect

Resource Utilization Model

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Case Study: Smart Phone

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 18

Optimizing Controller

Power Supply

radio power

bandwidth

connection

receive send disconnect connect

download disconnect connect

Media Player Application (on a smart phone)

stopped

paused

connection

 [until next m seconds are buffered]

playing

connection

 [until next m seconds are buffered

 or

 when n seconds of the buffer is

 consumed]

stop

stop

stop

play

play

pause

play

pause play

IDLE

 radio power ≈ 0 mW

 bandwidth ≈ 0 kbps

CELL DCH

 radio power ≈ 800 mW

 bandwidth ≈ 100 kbps

CELL FACH

 radio power ≈ 460 mW

 bandwidth ≈ 20 kbps

Network Manager of a 3G Network

send ∨ receive send ∨ receive

[inactivity timer = y]

∨ disconnect

disconnect [inactivity timer = y]

connect

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Analyze

system

resource

behavior

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 19

Select most

suitable

optimizer

components

Identify

optimizer

components

Identify functional

components

new

Design Method for Energy-Aware Embedded

Software

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

Identify key properties of RUM

Model resource behavior

existing

S. te Brinke, S. Malakuti, C. Bockisch, L.

Bergmans, M. Akşit. A Design Method

For Modular Energy-Aware Software.

In SAC, ACM, 2013

A design method for modular energy-aware software

Analyze

system

resource

behavior

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 20

Select most

suitable

optimizer

components

Identify

optimizer

components

Identify functional

components

new

Design Method for Energy-Aware Embedded

Software

Identify key properties of RUM

Model resource behavior

existing

Can be tool-supported

for components with

existing implementation.

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Purpose of RUM at design-time

• Guarantee liveness and safety properties for all

concretizations

→ Over-approximation

• Human-readable

→ Abstraction must be minimal

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 21

Must be
abstraction
of resource

behavior

Specification for
component

implementations

Understand
resource behavior

Prove correctness
of optimization

Pick most
effective

optimization

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

A Formal Method for Extracting RUMs

• Counterexample-Guided Abstraction Refinement (CEGAR) [16]

• Can be applied to create RUMs for existing components

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 22

Model check
(initial) RUM

Simulate
counterexample

Spurious
counterexample

Automatically
refine RUM

Success

 final RUM

Real

counterexample

 key properties

or implementation

wrong

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

S. te Brinke, S. Malakuti, C. Bockisch, L. Bergmans, M.

Akşit, S. Katz. A Tool-Supported Approach for Modular

Design of Energy-Aware Software. In SAC, ACM, 2014

A design method for modular energy-aware software

Extract RUM using CEGAR

• Initial abstraction

• Identify maximum power consumption

• Specify one re-entrant state

• With power consumption <= maximum

• Example key property: in all execution sequences, the media player

consumes less than 10 J for playing 20 s of music

• Counter example exists in abstract model

• This counterexample does not exist in concrete model because of time-out

and IDLE state

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 23

power

<= 1J/s

IDLE

power <= 0.1 J/s

dl speed = 0s

music per s

ACTIVE

power <= 1 J/s

dl speed = 3s

music per s

request

done

¬done

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

S., te Brinke, C. Bockisch, L.,

Bergmans, S. Malakuti, M.

Aksit, S. Katz. Deriving

Minimal Models for

Resource Utilization. In:

GIBSE, ACM, 2013

A design method for modular energy-aware software

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

CEGAR for Extracting RUMs

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 24

model check
(initial) RUM

simulate
counterexample

spurious
counterexample

automatically
refine RUM

success

 final RUM

real

counter-

example

time

execute and profile

analyze profile

relate profile to events

JBCPP JBCPP to Uppaal

Trepn

A design method for modular energy-aware software

Tool support

• Developed JBCPP

• Ecore-based model of Java bytecode

• Extensible (e.g., energy/time information)

• Adapted MAGIC

• CEGAR-implementation

• Extract RUM from C source code

• Optimize resulting RUM

• Adopted Trepn

• Energy profiling Android applications

• Adopted UPPAAL

• Compose and analyze system resource behavior

• Simulate using model checking

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 25
O

v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Identify key properties of RUM

Model resource behavior

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 26

Select most

suitable

optimizer

components

Identify

optimizer

components

Identify functional

components

new

Design Method for Energy-Aware

Embedded Software

existing

Analyze

system

resource

behavior

When RUM is specified

formally, it can be analyzed

by model-checking tools.

O
v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Analyzing System Resource

Behavior with UPPAAL
• Commercially used model checker

• Model, verify, and validate timed automata

• Models are finite-state machines with numeric and clock

variables (RUM)

• Transitions react to events (invocation of provided service)

• Create events (invoke required service)

• Variables (can represent resource consumption)

• Key properties

• Subset of timed computation tree logic

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 27
O

v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Analyzing System Resource

Behavior with UPPAAL
• Consistency checks:

only use specified services and

resources

• Liveness checks:

• Simulate model to determine

resource usage

• Cannot automatically choose the best composition

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 28
O

v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Summary

• Iterative method for developing energy-aware software

• Software controlling energy-intensive hardware

• Modular implementation of optimizations

• Specify energy (resource) behavior at interface

• Tool for extracting resource utilization model

• Based on formal method

• Yields timed automaton

• Analysis of system's resource utilization

• Not shown here:

Programming language support for automatic, online

tracking of resource state

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 29
O

v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Future Work

• Improve energy profiling

• Software Energy Footprint lab:

Dedicated hardware measuring energy consumption

• High accuracy

• Use analysis result to improve profiling automatically

• Time Performance Improvement with Parallel Processing

Systems

• Use model checker simulate system with soft real-time constraints

• Identify bottlenecks and propose optimizations

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 30
O

v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

A design method for modular energy-aware software

Next Research Idea

Optimize energy consumption of execution itself

• Create extensive profile:
• Energy consumption

• Non-deterministic behavior, such as:
thread-switching, optimization decisions, garbage collection

• Discover dependencies with data mining

• Derive heuristics for non-deterministic decisions

• Possibly develop online optimizations

March 31, 2015 OUrsi @ ON.NL – Christoph Bockisch 31
O

v
e

rv
ie

w

M
e

th
o

d

T
o

o
lin

g

C
o

n
c
lu

s
io

n

